GMOFORUM.AGROBIOLOGY.EU :  Phorum 5 The fastest message board... ever.
Goto Thread: PreviousNext
Goto: Forum ListMessage ListNew TopicSearchLog In
Checkbiotech: Purdue study finds antioxidant protects metal-eating plants
Posted by: DR. RAUPP & madora (IP Logged)
Date: September 03, 2004 06:49AM ;

WEST LAFAYETTE, Ind. - An antioxidant, a type of compound that prevents
certain types of damage to living cells, appears to allow some kinds of
plants to thrive on metal-enriched soils that typically kill other plants,
says a Purdue University scientist, September 2004 by Jennifer Cutraro .

This finding, published in the current issue of The Plant Cell, provides
an important new insight for the development of plants that could be used to
help clean polluted sites. The work also answers a fundamental question for
researchers studying how certain types of plants tolerate levels of metals
in their tissues that are toxic to most other plants.

"We were able to clearly establish for the first time that plants that
create and accumulate high cellular levels of the antioxidant glutathione
are much more nickel tolerant," said David Salt, associate professor of
plant molecular physiology in Purdue's horticulture department.

The term antioxidant generally refers to a broad class of compounds that
protect cells from damage otherwise caused by exposure to certain highly
reactive compounds.

Understanding the mechanism behind nickel tolerance provides an important
tool for researchers like Salt, whose goal is to develop plants that remove
toxic metals from the environment in a process known as phytoremediation, or
extract useful metals from soil, a process known as phytomining.

While previous research has shown where metals reside in a plant's cell,
this is some of the first data showing how plants protect themselves from
the damaging effects of those metals.

"One major hurdle to developing hyperaccumulating plants is toxicity," said
John Freeman, first author of the paper and a doctoral student working with
Salt. "For a plant to hyperaccumulate metal, it has to be able to tolerate
metal toxicity."

A nearly ubiquitous antioxidant, glutathione plays a critical role in
minimizing oxidative stress, or damage caused by highly reactive compounds,
Salt said.

Plants require metals like nickel in minute quantities for certain metabolic
processes, but at high levels metals can damage membranes, DNA and other
cell components. Most plants try to keep the levels of metals in their cells
at a minimum, but plants called metal hyperaccumulators have the unique
ability to build up unusually high levels of metals in their tissues without
any ill effect.

Previous research indicates that hyperaccumulators store metals in a
specialized cell compartment called the vacuole. Sequestered in the vacuole,
nickel and other metals can't damage other parts of the cell. But nickel
still must travel within the cell in order to enter the vacuole in the first
place, Salt said.

"To get to the vacuole, the nickel has to traverse the interior of the cell,
where most of the plant's sensitive biochemical processes reside," he said.
"So we've been interested in finding out if there's something in the cell's
interior that protects it from oxidative damage as the metal crosses the

In this study, Salt and his colleagues sampled a number of closely related
plants that grow on soils naturally enriched in nickel. These plants ranged
from those that didn't accumulate any nickel to the hperaccumulators that
built up almost 3 percent nickel by weight.

He found that the concentration of glutathione was well correlated with a
plant's ability to accumulate nickel.

"This correlation makes good sense," Salt said. "If you accumulate a lot of
nickel, then you will need the ability to resist high levels of oxidative

Correlation doesn't prove causation, however, so the next step in Salt's
study was to establish that glutathione played a functional role in nickel

He and his colleagues isolated a gene called SAT, and inserted it into a
model lab plant called Arabidopsis thaliana, which does not normally
tolerate nickel. The gene SAT produces an enzyme called serine
acetyltransferase, which plays a role in producing glutathione in
hyperaccumulating plants.

When Salt grew both normal Arabidopsis and those containing the SAT gene on
a nickel-containing medium, the normal plants failed to grow and showed
signs of severe membrane damage, an indicator of oxidative stress. The
plants with the inserted gene thrived, showing no signs of membrane damage.

Going one step further, Salt conducted another experiment in which he
exposed the Arabidopsis containing the SAT gene to a compound that inhibits
their ability to make glutathione. When grown on nickel, these plants also
suffered high levels of oxidative damage, just like their normal

"This confirms that it really is glutathione that's responsible for nickel
tolerance," Freeman said.

This research is part of a larger gene discovery initiative involving
Purdue's Center for Phytoremediation Research and Development, a
multidisciplinary research center dedicated to developing a "molecular
toolbox" that will provide the genetic information to develop plants ideally
suited to the phytoremediation of polluted sites. Technologies developed at
the center will be commercialized through a partnership with the Midwest
Hazardous Substance Research Center, a U.S. Environmental Protection Agency
regional hazardous substance research center.

Also participating in this project were undergraduate student Ken Nieman,
technician Carrie Albrecht and research scientist Wendy Peer of Purdue;
Michael W. Persans, who was a postdoctoral scientist in Salt's laboratory
and now has a position at the University of Texas Pan-American; and Ingrid
J. Pickering of the Stanford Synchrotron Radiation Laboratoty. Funding was
provided by The National Science Foundation, the U.S. Department of Energy
and the National Institutes of Health.


Posted to Phorum via PhorumMail

Sorry, only registered users may post in this forum.
This forum powered by Phorum.