GMOFORUM.AGROBIOLOGY.EU :  Phorum 5 The fastest message board... ever.
Goto Thread: PreviousNext
Goto: Forum ListMessage ListNew TopicSearchLog In
Fast-growing trees could take root as future energy source
Posted by: Prof. Dr. M. Raupp (IP Logged)
Date: October 18, 2006 05:29PM ; ;

A tree that can reach 90 feet in six years and be grown as a row crop on
fallow farmland could represent a major replacement for fossil fuels,
October 2006.

Purdue University researchers are using genetic tools in an effort to
design trees that readily and inexpensively can yield the substances needed
to produce alternative transportation fuel. The scientists are focused on a
compound in cell walls called lignin that contributes to plants' structural
strength, but which hinders extraction of cellulose. Cellulose is the
sugar-containing component needed to make the alternative fuel ethanol.

The Department of Energy's Office of Biological and Environmental Research
is funding a $1.4 million, three-year study by Purdue faculty members Clint
Chapple, Richard Meilan and Michael Ladisch to determine ways to alter
lignin and test whether the genetic changes affect the quality of plants
used to produce biofuels. A hybrid poplar tree is the basis for the research
that is part of the DOE's goal to replace 30 percent of the fossil fuel used
annually in the United States for transportation with biofuels by 2030.

In 2005 ethanol accounted for only 4 billion gallons of the 140 billion
gallons of U.S. transportation fuel used - less than 3 percent. About 13
percent of the nation's corn crop was used for that production. Purdue
scientists and experts at the U.S. departments of Agriculture and Energy say
corn can only be part of the solution to the problem of replacing fossil

"If Indiana wants to support only corn-based ethanol production, we would
have to import corn," said Chapple, a biochemist. "What we need is a whole
set of plants that are well-adapted to particular growing regions and have
high levels of productivity for use in biofuel production."

Chapple and Meilan want to genetically modify the hybrid poplar so that
lignin will not impede the release of cellulose for degradation into
fermentable sugars, which then can be converted to ethanol. The changed
lignin also may be useable either in fuel or other products, they said.
Currently about 25 percent of the material in plants is the complex molecule
lignin, which in its present form could be burned to supply energy for
ethanol production, but cannot be transformed into the alternative fuel.

Altering lignin's composition or minimizing the amount present in a cell
wall could improve access of enzymes. With easier access, enzymes would be
able to more efficiently convert cellulose to sugars. Current treatments
used for extracting lignin from woody products for pulp and paper production
are harsh and pollute the environment, said Meilan, a Purdue Department of
Forestry and Natural Resources molecular tree physiologist.

To advance production of non-fossil fuels, Chapple and Meilan are using
genetic tools to modify the poplar and then study how the alterations
changed the plants' cell walls. Meilan also is attempting to find ways to
produce trees that are reproductively sterile so they are unable to transfer
introduced traits to wild trees.

When Chapple and Meilan are satisfied with the results, they will give wood
samples to Ladisch, a distinguished professor of agricultural and biological
engineering, so he can determine if the changes have created trees suitable
for high-yield ethanol production.

Using hybrid poplar and its relatives as the basis for biofuels has a number
of advantages for the environment, farmers and the economy, they said.

"Poplar is a low-maintenance crop; plant it and wait seven years to harvest
it," Meilan said. "You're not applying pesticides every year; you're not
trampling all over the site every year and compacting the soil. You're
allowing nutrients to recycle every year when the leaves fall and degrade.
In addition, you are more likely to have greater wildlife diversity in
poplar plantings than in agricultural fields."

Experts are proposing planting the trees in rows just like any field crop.
The basis of these tree plantations will be tens of millions of acres that
the DOE and USDA have inventoried as being unused or fallow - previously
used farmland that is standing empty because farmers are paid not to grow

"We need a bioenergy crop that can grow many places year-round," Meilan
said. "The genus Populus includes about 30 species that grow across a wide
climatic range from the subtropics in Florida to sub-alpine areas in Alaska,
northern Canada and Europe."

Corn can be grown only in a few areas of the world and only during a
relatively short growing season. Besides needing potential fuel-source crops
that can be grown year-round and in many geographical locations, experts
also want to increase the per acre tonnage yield of crops and the gallons of
ethanol per ton.

Researchers believe that using the hybrid poplar in its present form could
produce about 70 gallons of fuel per ton of wood. Approximately 10 tons of
poplar could be grown per acre annually, representing 700 gallons of
ethanol. Corn currently produces about 4.5 tons per acre per year with a
yield of about 400 gallons of ethanol. Changing the lignin composition could
increase the annual yield to 1,000 gallons of ethanol per acre, according to
experts. Planted on 110 million acres of unused farmland, this could replace
80 percent of the transportation fossil fuel consumed in the United States
each year.

"We don't want to compromise the structural integrity of the plant," Meilan
said. "We just want to alter the lignin composition to make it easier to
liberate the cellulose for conversion to simple sugars that the yeast can
gobble up and turn into ethanol."

Additional information is available online at
[] .

Posted to Phorum via PhorumMail

Sorry, only registered users may post in this forum.
This forum powered by Phorum.